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The Reynolds equations are solved for the turbulent flow of a fluid in an equipment formed 
by two coaxial cylinders the inner of which (rotating) is equipped with radial blades. The method 
of solution is that applied by Karman and Prandtl to the flow in a circular pipe. The result of the 
solution is the radial profile of the dimensionless tangential component of the mean velocity 
in the form of a universal velocity profile in the given system. The analytical solution was com
pared with the experimentally found velocity field in the space between the outer edge of the 
rotating blades and the outer fixed cylinder. The .results have confirmed the justification of 
the general analytical solution of the flow in the given system and were further used to calculate 
the parameter of the universal velocity profile for the system considered. 

An equipment with a smooth rotating cylinder designed for dispersion of two liquids has been 
described by Clay1 and an analogous equipment for the study of transport phenomena in hetero
geneous systems has been proposed by Gandhi and Estrin2

• Existing studies deal with this set-up 
from the viewpoint of the laminar flow stability, momentum transfer and application to rheo
logical measurements3 • For turbulent flow studies appears interesting the paper of Ustimenko 
and coworkers4 who distinguish two different cases depending on which of the cylinders is rota
ting. Under developed turbulence and rotation of the outer cylinder the radial profile of the 
dimensionless velocity 15/umax is independent of the Reynolds number; in the opposite case certain 
relation between both quantities can be detected. The latter phenomenon the authors explain 
by stabilizing effect of the field of eccentric velocity acting on the liquid in the space between 
the cylinders. The value of the Reynolds number (defined in terms of the peripheral velocity 
of the rotating cylinder) is in both cases greater than 2. 104

• Under this type of flow the so called 
Taylor vortices5 •13 form within the system as helix lines around the inner cylinder. This pheno
menon causes the radial component of the intensity of turbulence to exceed the tangential com
ponent by a factor of two. Mizushina and coworkers6 measured the velocity field in a cylindrical 
vessel equipped with axially located impeller with perpendicular blades in dependence on its 
relative height. From their results processed with the aid of a numerical solution of the Reynolds 
equations of flow it follows that the flow in the space above and below the impeller, where it is not 
immediately affected by the motion of the blades, is predominantly a secondary tangential flow. 
The radial profile of the tangential component of the mean velocity in the space occupied by the 
blades is indirectly proportional to the radial distance but it includes also an additive term pro
portional to the radial component of the local mean velocity. The given profiles for relatively 
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wide blades agree well with the experimental data. Under the given conditions also the field 
of contours of constant intensity of turbulence, ue, is homogeneous as a whole without local 
compression of the lines. 

From the review it is apparent that the source of the convective transport - the 
impeller, or the rotating cylinder - must be modified so as to give as much as 
homogeneous, yet intensive enough, field of the mean and fluctuation components 
of velocity. These facts were taken into consideration in design of the apparatus. 

THEORETICAL 

Consider a quasi-stationary turbulent flow of an incompressible fluid between two 
concentric cylinders as sketched in Fig. 1. The inner cylinder is equipped with radial 
blades and rotates. The frame of reference used for description is shown in Fig. 2. 
The following simplifying assumptions are introduced for the system considered: 
I) All viscous stresses are negligible in comparison with the turbulent ones. 2) The 
system is axially symmetric. 3) The effect of the bottom and the lid on the velocity 
field is negligible. 4) The flow within the system takes place predominantly in the 
tangential direction; the radial and the axial components of the mean velocity may be 

FIG.l 

A Sketch of Experimental Set-Up 
1 Inner cylinder with radial blades, 2 outer 

smooth cylinder, 3 radial blades, 4 upper lid , 
5 bottom lid, 6 packing, 7 lower bearing. 

FIG. 2 

The Frame of Reference in the Experimental 
Equipment 

The origin of the z axis is on the lower 
edge of the rotating cylinder with radial 
blades. 
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neglected. 5) The mean square fluctuation components v~2 and Ji; in a given posi
tion are equal. 6) The tangential component of the mean velocity reaches its 
maximum iiemax• on the outer edge of the radial blades of the inner cylinder (r = r) 1 . 

From the Reynolds and the continuity equations for a quasi-stationary flow of an in
compressible fluid in cylindrical coordinates 7 we get after simplification in accord 
with the above assumptions 

dpfdz = -QcY, r = const., (1) 

v~ J r = (1 /ar) (dpfdr), z = const., (2) 

d(v;v~)Jdr = -(2/r) (v~v~). (3) 

By solving the set of Eqs (1) and ( 2) the distribution of the mean static pressure pin the 
system is obtained; from Eq. (3) then the radial profile of the component v8 of the 
mean velocity characterizing the flow within the system. On integrating Eq. (3) 
with the aid of the definition of the appropriate component of the turbulent stress 
tensor i~, and the boundary condition i~, = rw for r = R we get 

(4) 

In an analogous way as that leading to the universal logarithmic velocity profile 
in a pipe8 we shall make use of the Karman relation for the non-zero component 
of the turbulent stress 5 in which we substitute from Eq. ( 4) to get 

(5) 

Since (dv
8

fdr) < 0, we get from the Boussinesque relation9 i~, = e(dv8 fdr), that 
the viscous stress on the wall rw is always negative. Thus we may write 

(6) 

On integrating ~q. ( 6) with the boundary conditions expressing '"no slip" of liquid 
on the wall of the fixed cylinder, i.e. dr fdv8 = 0 for r-+ R, and with the assumption 
6, [v

19
(r

1
) = iiemax], one obtains the result in dimensionless form as 

(7) 
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The quantity iiemax is eliminated in a manner similar to that used by Prandtl in case 
of a pipe5

• Let us suppose that there exists a laminar sublayer L\r1 thick on the wall of 
the outer cylinder. For its thickness Prandtl derived 

L\rl = f3(vfv*), (8) 

where f3 is a constant characterizing the flow within the laminar sublayer and its 
value has been determined experimentally8 for similar flows to be equal f3 = 11·5. 
For a relatively thin layer the radial profile of the velocity component in the sub
layer v8 = ii9 (r) may be approximated by a linear profile assuming the Newton 
law of viscosity to hold in the given region and the tangential stress at r2 = R - L\r 1 

may be put equal to rw. Finally, we may write 

(9) 

On integrating the last equation in the limits r 2 and Rand after some arrangement 
we get 

(10) 

At r2 we have also Eq. (7) in which we can substitute for the ratio v9 (r2)fv* from 
Eq. (10). The ratio iiemax/v* may thus be expressed as 

iiem!!?! = f3 + _!_In R + rz - _!_In R + rt . 
v* K R - r 2 K R - r 1 

(11) 

The procedure leads to an expression for ii9 (r): 

v8 = -- - - -- og - - + - - og - - - + . + _ ii9 (e) _ 2·303 1 (1 + e) 2·303 1 (R + r 2 ) f3 
v* K 1 - e K R - r 2 

(12) 

Quantity r 2 can be determined from 

r 2 = R - f3(vfv*) (13) 

and K must be found from an experimental velocity profile ii8 = v8 (r). To determine 
v* we start from the general equation for the pressure drop, which, in view of the 
assumption 3, may be written in a form analogous to that for the flow between two 
parallel infinite plates 

A- J 2nR ii~max 
ilPez = --- -- ec · 

R- r 1 4 
(14) 
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From the balance of forces under quasi-stationary flow written in accord with assump
tion 3 we find for the tangential stress near the wall the following expression 

(15) 

and further, after some manipulation, an expression for the dynamic velocity 

v* = (!)112 (vemax/2) . (16) 

To calculate the friction factor f, Eq. (7) is written at r = r2 with M 1, v9 (r2 ) and v* 
substituted by using Eqs (8), (10) and (16) respectively. Thus we obtain 

! 112 = + 2K(log {[R(R - r1)/(R + r1)Rem(f) 112 - fJ(R - r 1)]/fJ(R - r 1)} + 
+ KfJtt. (17) 

EXPERIMENTAL 

Equipment. The equipment consists of two concentric cylinders, the outer is fixed and the 
inner rotates around its axis (see Fig. 1). The inner cylinder 1 is further equipped with six 
radial blades 3. The arrangement and the dimensions are apparent from Fig. 1. The material used 
was brass and perspex glass (the outer cylinder 2 and both lids). 

Measuring technique. The experimental technique was that of photographing the trajectories 
of tracer particles. The hot-wire anemometer technique was rejected for the present because 
of the difficulties associated with the disturbing effects of the probe on the flow in a relatively 
small experimental equipment. For tracer we took aluminum powder. The size of the powder 
particles was 10- 4 m used at concentration 1·5 g/1. The suitability of the particles was verified 
by computing a) the slip velocity between the particles and the liquid (the velocity of the latter 
was taken 0·8 m/s) according to Pinkus10, and b) the intensity of turbulence of the particles and 
the liquid according to Soo11 . In the latter case the necessary value of the Lagrange macro-scale 
of turbulence was taken equal to 1 em in accord with the measurements of Mujumdar and co
workers12 under the conditions which were thought to be comparable with those in our experi
mental set-up. For the root mean square of the fluctuation velocity component we took 0·05 mfs 
as a mean value found by preliminary experiments. The obtained results have confirmed that the 
particles of the given size follow sufficiently accurately the convective flow and the turbulent 
pulsations (the slip velocity was virtually zero and the difference between the intensity of the 
turbulence of the particle and liquid was found smaller than 2%). To trace the paths of the alu
minum particles we used a Pentaflex AK-16 motion picture camera (lens Meyer 2·8-100). 
The over-all arrangement of the recording set-up is apparent from Fig. 3. In order to achieve 
a sufficiently sharp and contrast image of the trajectories the whole apparatus was covered with 
black paper leaving only two slots. The first, 1·8 mm wide, in the bottom for the light, the other, 
15 mm wide, in the lid for the camera. The projections of the trajectories were measured on en
larged negatives; the total enlargement being 8·53. 

The time of exposure was taken so as to confine the length of the trajectories below the mesh 
size of the grid (I mm) used to determine the local values of velocity components. The found 
depth of field for the given lens was 2·5 mm which is sufficient with regard to the magnitude 
of the quantities Ivai and jv;l which do not permit the particle to leave the photographed plane 
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during exposure. The velocities were averaged over a volume about 105 times smaller than the 
volume of the whole equipment which was though reasonable for preserving the local character 
of the measured quantities. 

Accuracy. At the 30° angle and the frequency 20 s - 1 the average deviation of the shutter 
speed was 1·3%. This value was found from measurement of the position of the pointer on the 
chronometer on 35 sequentially taken frames. The maximum deviation of the dermination of the 
position in the system was 0·2%. The fluctuation of the r.p.m. of the inner cylinder was 0·6% (the 
maximum deviation at the lowest r.p.m.). The maximum error of the dependent variables fol
lowing from these deviations are: !:iv8 = ±0·018 m/s and /:ivr = ± 0·012 mf s. If the error of 
the average of the above velocities is not to exceed 0·003 mfs, the number of measurements 
of the instantaneous local values must not drop below 40. The deviations of these averages 
then reach the following maximum values: !:iv@ = ±0·0028 m/s, /:ilir = ± 0·0017m/s. 

Experimental conditions. The velocity profiles and the profiles of the intensity of turbulence 
were measured in a plane perpedicular to the axis of the equipment passing through its center. 
Distilled water at 20 ± 0·5°C was used as liquid. The selected r.p.m. of the inner cylinder and the 
maximum (peripheral) tangential velocities were as follows: 147·0, 123·0,"' 100·4, 75·8 (min - 1) 

and 0·776, 0·650, 0·530, 0·400 (m s - 1
) . 

RESULTS AND DISCUSSION 

Radial Profiles of the Mean and Fluctuation Velocity Components 

The tangential component of the mean velocity expressed as V8 = v8 Jvemax de
creases uniformly (see Fig. 4) from the outer edge of the blades up to almost the wall 
of the fixed cylinder. A significant velocity gradient appears over a very short radial 

FIG. 3 

A Sketch of Picture-Taking and Illumination 
Set-Up 

1 Picture camera, 2 apparatus, 3 mirror, 4 

slot, 5 slot in the lid, 6 1 000 W lamps, 7 
800 W halogen floodlights. 
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Radial Profiles of the Mean Velocity Com
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The Velocity Field in a Vessel with Rotating Cylinder 77 

distance in the proximity of the rotating blades. This is apparently the source of the 
turbulence in the system contributing considerably to the different behaviour of the 
system in contrast to that consisting of two coaxial smooth cylinders. On the side 
of the fixed cylinder the course of the given component of the mean velocity is on the 
contrary in full agreement with the behaviour of the profile of the component of the 
mean velocity near the smooth wall: As a consequence of viscous forces the profile 
is steeper and one may expect the transient buffer layer8 to appear between the laminar 
sublayer and the turbulent core of the flow. 

The magnitude of the radial component of velocity expressed as Vr = vr/vamax 
remains small along the whole examined interval (see Fig. 4) and may be neglected in 
view of the accuracy of measurement since both positive and negative values appear 
randomly along the whole radius. Only certain values found at the lowest r.p.m. 
differ significantly from zero which is probably caused by the systematic error of mea
surement associated with the vortex formed between two neighbouring blades. At low 
r.p.m. this vortex gives rise to a significant secondary flow. The lower limit of the 
interval of r.p.m. should be thus regarded as being outside the validity limits of the 
presented theory. The Reynolds number still reaches Rem = 2·2 . 104

; the proposed 
solution can be accepted as long as Rem > 2·5 . 104

• 

The experimentally found velocity profile v; = v~(Q + ) (Fig. 5) illustrates the ade
quacy of the correlation (12). The value of the parameter K, however, cannot be 
taken over from the results in a straight pipe. This value was found from the ex
periments (see Fig. 5) in an iterative manner, i.e. by succesive regression of the linear 
relation between v; and e + in which we had substituted for v+ from Eqs (16) and 
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Universal Logarithmic Velocity Profile be

tween Two Coaxial Cylinders 
The inner cylinder with the blades is rotat

ing. 
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Radial Profile of the Tangential Fluctuation 
Velocity Component 
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(17) and forK the value from the previous iteration step. The resulting K after the 
fourth iteration is K = 1·89 while the first estimate from experiments in a straight 
pipe8 was K = 0·4. Fig. 5 shows the best straightline v~ = v~(e + ) for the value of K 

from the last iteration. The 95% confidence limits v~ ± 2cr"; are shown there too. 
The values after the third and the fourth iteration did not differ by more than the 
accuracy of the calculation from the experiments. From the results it follows that 
the order of magnitude of K for our system and for a straight pipe of circular cross
section is almost the same but their identity could not be proven. 

The radial profiles of the root mean square fluctuation components of the velocity 
display again certain important properties: 

The dimensionless tangential component defined as ( V~2 ) 112 = (v;}) 1 i 2 j(vemax) 
remains almost constant over the whole investigated radius (see Fig. 6) excepting the 
immediate proximity of the inner fixed cylinder (discarding cert~.in results carrying 
serious experimental error under the lowest r.p.m.). 

The profile of the radial dimensionless component, defined as (v;zy1z = (v;2
)

1i 2
: 

: iiemax becomes important starting from Q = 0·9 (Fig. 7) up to the fixed cylinder 
where the decay of turbulence due to the presence of a solid surface at rest calls 
for a decrease of the given quantity. Extrapolating to Q = 1 one obtains practically 
a zero value. 

The radial profile of the tangential component of turbulence defined as* ere = 
= ( v',i) 112 jv displays in the turbulent core (see Fig. 8) similar properties as the radial 

FIG. 7 

Radial Profile of the Radial Fluctuation 
Velocity Component 

07 · lfs - - 09 . 

FIG. 8 

Radial Profile of the Tangential Component 
of Intensity of Turbulence 

The absolute magnitude of the vector of local mean velocity v was computed as a vector 
product of v8 and vr. 
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profile of(V~2 ) 112 ; in region of the buffer layer, however, the value of (Je significantly 
increases and its eventual decrease in region of the laminar sublayer was not de
tected in the experiments since there was not eno~gh traces of the aluminum powder 
in the proximity of the wall. 

The radial component of the intensity of turbulen ce, defined as (Jr = (v' 2
)

1
'

2 fv, 
displays in contrast almost identical properties (see Fig. 9) along the radius. Some
what different appears the region in the immediate proximity of the rotating blades 
where (Jr decreases with(} so that at r = rt the v~ component induced by the rotation 
of the blades prevails over v;. 

It should be noted that the profiles near the top and the bottom lids will be af
fected by the presence of the solid surface at rest. However, the affected depth is 
small enough to occupy only an insignificant portion of the volume of the apparatus. 

The Analysis of the Simplify ing Assum ptions of the Solution of the Reynolds 

Equation 

On the basis of the experimental results one can now judge the adequacy of the as
sumptions made in the course of the solution. 

The first of them could not be verified explicitly, however, the components of the 
intensity of turbulence, which in almost the whole system exceed 5%, confirm that 
the character of the flow in the whole equipment is turbulent. As an indirect proof 
of the validity of the assumption one can put forth a) the agreement of the proposed 
correlation between v~ and Q + which is typical for turbulent flow, and b) the men
tioned minimum value of the Reynolds number Rem in the system corresponding 
already to a fully developed turbulent flow. The assumption of negligible effect 
of the lids of the apparatus on the velocity field in the system, of course, does not 
hold in the proximity of the lids. The solution though was proposed for the bulk 

FIG. 9 

Radial Profile of the Radial Component 
of Intensity of Turbulence 
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of the phase in the equipment which is acceptable in view of the preliminary experi
mental finding in the tangential plane showing the value of vz negligible in the whole 
investigated interval. The fourth assumption for v. has been confirmed (see Fig. 4). 
Negligible values of vz over the investigated radius were also found in preliminary 
experiments and it may be expected that in view of the design of the apparatus a zero 
value of v. in an incompressible fluid calls for zero value of Vz for continuity reasons. 

The justification of the fifth assumption was proven in the whole examined inter
val excepting the proximity of the wall of the outer immobile cylinder. In this region 
the existence becomes important of the mentioned transient buffer layer and a more 
accurate solution would require introduction of another intermediate layer in ad
dition to the laminar sublayer near the wall (in the sense of the semi-empirical solu
tion for a pipe5

•
8

). This approach, though providing a more accurate solution would 
complicate the solution excessively, especially at the succesive determination of the 
dispersion mechanism of the immiscible liquids in the system. 

The sixth assumption implies that the number of revolution of the cylinder is so 
high that the liquid between the blades can be looked upon from the standpoint 
of its mean velocity as a rigid body rotating with the blades. Then indeed the maxi
mum velocity in the system is that of the peripheral velocity of the edges of the blades. 
This consideration, of course, does not rule out the existence of pulsations of the 
velocity in the space between the blades, which then contribute to the increased 
level of intensity of turbulence in the batch. 

A Compa.ri son of the Velocity Profiles in a Straight Pipe and in the Proposed 

Apparatus 

The course of the longitudinal component of the dimensionless mean velocity v; 
(or v: in the pipe) is the same 5

•
8 in principle for both systems compared, i.e. expres

sed as a logarithmic function of the dimensionless radial coordinate. A parameter 
in both cases is the maximum value of the dimensionless average velocity, or after 
arrangement, the value averaged over the whole cross section. In such a case even 
the auxiliary calculations (e .g. the calculation of the friction factor) do not differ. 
The course and the form of the radial profile is thus in both cases compared equivalent 
although in the case of cylinders of which one is fixed this relation is a monotonous 
function of spatial argument while in the pipe the given function has a maximum 
in the axis of the tube. 

The radial profiles of the longitudinal and ,the transverse dimensionless fluctua-

tion components (v;iyl2 and (v; 2
)

112 (or in case of the pipe (V~2) 1 1 2 and (V;2
) 112 ) 

differ either in their magnitude or in their course9
•
13

•
14

. Apart from the almost 
monotonous course of both functions in case of the rotating cylinders and the courses 
exhibiting minima in the axis of the tube, they differ mainly in the form of the profiles 
of the longitudinal components. While in our apparatus the latter is almost con-
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stant over the whole cross-section, in a tube the value of (V~2) 1 ' 2 between the wall 
and the axis doubles. The transverse component near the wall in the both cases 
steeply decreases which is more marked near the fixed cylinder than near the wall 
of the pipe. Both quantities compared differ also in the magnitude of the fluctuation 
component: in case of the rotating system the corresponding velocities are almost 
twice of these in the tube. This fact is well evidenced also in the radial profiles of the 
intensity of turbulence CJe and CJ, for the rotating system and CJz and CJ, in a tube. 
In case of CJe and CJz the difference in absolute magnitude is not so marked but in the 
pipe the intensity CJz near the wall is twice as high as that in the axis of the tube. The 
course of the turbulent stress i~" or i~,, differs also as a consequence of the mentioned 
facts: the monotonous course in the rotating system is widely different from that 
in a tube with two maxima. 

From the comparison it follows that the field of turbulent characteristics in the 
space between the rotating inner cylinder with the blades and the outer solid cylinder 
at rest is a great deal more homogeneous than in a pipe and the intensity of turbulence 
in the former apparatus is much higher than in the latter. This will be particularly 
useful for processes involving dispersion of immiscible liquids15. Fot this reason 
as well as for the operating reasons (the size of the system and liquid hold-up) the 
proposed equipment may be regarded as well suited for the study of the transport 
phenomena in heterogeneous systems under steady supply of mechanical energy. 

LIST OF SYMBOLS 

A integration constant (m4 s- 2
) 

f friction factor 
H height of apparatus (m) 
K parameter 
p static pressure (kg m- 1 s- 1) 

R radius of outer cylinder (m) 
Rem :=[li9013 , (R - r 1)]j v Reynolds number 

radial coordinate (m) 
r1 radius of blade (m) 
r 2 radius of the boundary between laminar sublayer and turbulent core (m) 
vi = vJvemax dimensionless component of the mean velocity component 
(J7! 2) 1 i 2 = (u?)1 ' 2fue dimensionless component of the fluetrating velocity 

1 

local ~ean vel~~lty (m s -l) 
v' local value of the fluctuation component of velocity (m s - 1

) 

uemax mean peripheral velocity of the blades (m s- 1
) 

v+ dimensionless mean velocity .,........~~-· 
v* = (rw/Or)112 dynamic velocity (m s- 1) ;;;... \l H ~~~ 

axial coordinate (m) / Q- c: \\.-.! & 
p universal constant ! < \:, --- y.~ ;g I 

eddyviscosity (m2 s- 1) ~~ "\'~-~ ).,.)' 

I:J.p pressure drop (kg m- 1 s - 1
) \;!'_t;.. ~· -• _____ · __ / 

I:J.r 1 thickness of laminar sublayer (m) ~-
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e angular coordinate (deg) 
kinematic viscosity (m2 s- 1) 

ay standard deviation of y 

ai intensity of turbulence of the i-th velocity component (i = r, e, z) 
Q = r/R dimensionless radius 
Q + = log [(1 + a)/(1 - Q)] independent variable 
Qc density (kg m- 3) 

1L time averaged component of turbulent stress tensor (kgm - 1 s - 1
) 

rw viscous stress on the wall (kg m - 1 s - 1) 

Subscripts 

i, j component in general direction 
radial component 
axial component 

e tangential component 
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